Ion Chemistry in XH_4/A llene (X = Ge, Si) Gaseous Mixtures – Formation of X-C Bonds

Paola Benzi, Lorenza Operti,* Roberto Rabezzana

Eur. J. Inorg. Chem. 2000, 505-512

Due to a correction error, some columns of Table 6 on page 510 remained misaligned rendering the table incomprehensible. The correct version is given below.

Table 6. Reactions of $Si_3H_5^+$, $Si_4H_7^+$, $SiC_2H_n^+$, and $SiC_3H_n^+$ ions with allene and silane in a SiH_4/C_3H_4 mixture

Reactants	Product Ions and Rate Constants $(k_{exp})^{[a]}$	Σk_{exp}	$k_L^{[b]}$	Efficiency ^[c]
$Si_3H_5^+ + C_3H_4$	Si ₃ CH ₅ ⁺ (0.93), Si ₃ CH ₉ ⁺ (0.90), Si ₃ C ₃ H ₅ ⁺ (2.6)	4.4	10.38	0.43
$Si_4H_7^+ + C_3H_4$	$Si_3C_3H_5^+(0.46)$, $Si_4CH_7^+(0.80)$, $Si_4CH_{11}^+(0.78)$, $Si_4C_3H_7^+(1.6)$	3.6	9.96	0.36
$SiC_2H_3^+ + C_3H_4$	$SiC_3H_3^+$ (0.50), $SiC_3H_5^+$ (0.76), $SiC_5H_5^+$ (1.3)	2.6	11.35	0.23
$SiC_2H_5^+ + C_3H_4$	$SiC_2H_3^+$ (2.4), $SiC_3H_5^+$ (0.90), $SiC_3H_7^+$ (0.67), $SiC_5H_7^+$ (1.5)	5.5	11.26	0.49
$SiC_3H_5^+ + C_3H_4$	$SiC_4H_5^+$ (1.1), $SiC_4H_7^+$ (0.39)	1.5	10.85	0.14
$SiC_3H_6^+ + C_3H_4$	$SiC_4H_6^+$ (0.74), $SiC_4H_8^+$ (0.32), $SiC_5H_7^+$ (0.97), $SiC_6H_9^+$ (2.2)	4.2	10.82	0.39
$SiC_3H_6^+ + SiH_4$ $SiC_3H_7^+ + C_3H_4$	$Si_2C_3H_8^+$ (0.95) $SiC_3H_5^+$ (0.15), $SiC_4H_7^+$ (1.6), $SiC_4H_9^+$ (0.66),	0.95	10.38	0.092
/	$SiC_5H_7^+$ (1.1), $SiC_6H_9^+$ (1.3), $SiC_6H_{10}^+$ (0.25)	5.1	10.80	0.47
$SiC_3H_7^+ + SiH_4$	$Si_2C_3H_9^+(0.38)$	0.38	10.36	0.037

[[]a] Rate constants are expressed as 10^{-10} cm³molecule $^{-1}$ s $^{-1}$; experiments were run at 333 K; uncertainty is within 20%. $^{[b]}$ Rate constants have been calculated according to the Langevin theory calculating polarizability of C_3H_4 as in ref.^[19], and taking polarizability of SiH₄ from ref.^[20] $^{[c]}$ Efficiency has been calculated as the ratio $\Sigma k_{exp}/k_L$.

The Editors [C I99284]